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Abstract
Software resource consumption is a widely and actively researched area. Of the many
resources utilized by software which can be profiled, energy consumption has long been the
one resource without many generic, and yet comprehensive profilers. In the age of mobile
devices and efficient processing units the need for such profiles is continuously increasing. In
this work, we research methods for accurate measurement of energy consumption of software
based on them create an open-source profiler and implement a comprehensive visualizer
of the profiled data. Using the developed profiler we conduct a number of experiments
to showcase its capabilities and demonstrate the usefulness of measuring software energy
consumption.

Abstrakt
Spotřeba softwarových zdrojů je široce a aktivně zkoumanou oblastí. Z mnoha zdrojů v
softwaru, které lze profilovat, byla spotřeba energie dlouho jediným zdrojem, který neměl
mnoho obecných, a přesto komplexních, profilerů. V době mobilních zařízení a výkon-
ných výpočetních jednotek je poptávka po takových profilerech neustále rostoucí. V této
práci zkoumáme metody pro přesné měření spotřeby energie softwaru. Na jejich základě
vytváříme open-source profiler a implementujeme komplexní vizualizér profilovaných dat. S
vytvořeným profilerem pak provádíme řadu experimentů, abychom předvedli jeho schopnosti
a demonstrovali užitečnost měření spotřeby energie softwaru.
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Rozšířený abstrakt
V současné době se spotřeba zdrojů softwaru stává stále častěji předmětem zájmu uživatelů
i vývojářů softwaru. Vzhledem k tomu, že na trhu s elektronikou dominují mobilní zařízení,
je potřeba optimální spotřeby zdrojů více než zřejmá. Ale stejná potřeba platí i pro jiné
typy zařízení. Osobní stolní počítače, servery (především v oblasti HPC), zařízení IoT nebo
jiné chytré stroje musí také pracovat efektivně.

Existuje poměrně široká škála různých zdrojů, které může software spotřebovávat. Pro
mnoho z nich lze využít nepřeberné množství existujících analyzačních nástrojů, které
pokryjí většinu, ne-li všechny případy použití. Mnohé z těchto zdrojů však ještě čekají
na řádný výzkum. Zdrojem, který postrádá dobře zavedené nástroje, je spotřeba energie.
Zdroje jako procesorový čas nebo paměť jsou ve většině softwaru optimalizovány, protože
jejich optimalizace je nejjednodušší. Pokud by měl vývojář softwaru ve své sadě nástrojů
i nástroj pro rychlou, spolehlivou a podrobnou analýzu spotřeby energie svého softwaru,
mohl by začít optimalizovat software také pro optimální spotřebu energie. Optimalizace
výkonu může často vést k přehřívání a obecně k nepříznivému poměru mezi dobou běhu a
spotřebovanou energií, což by optimalizace spotřeby energie mohla pomoci zmírnit.

V současné době většina nástrojů pro Linux, které podporují měření spotřeby energie,
neposkytuje dostatečně podrobné informace a chybí jim jakýkoliv kontext. Mezi stáva-
jící nástroje patří powertop [54] nebo turbostart [53]. Považujeme to za příležitost využít
současnou nejmodernější technologii a existující výzkum k vytvoření open-source profileru
pro podrobné profilování spotřeby energie. Věříme, že takový profiler by mohl být použit
jako odrazový můstek pro další výzkum, zejména pokud by byl využit v nějakém širším pro-
jektu pro analýzu výkonu softwaru. Takovým projektem je Perun [21], open-source nástroj
pro průběžné testování výkonu softwaru, vyvinutý výzkumnou skupinou VeriFIT na VUT
FIT.

V této práci vytváříme první prototyp open-source energetického profileru, který bude
integrován do systému Perun, a nástroj pro vizualizaci dat výsledných profilů. Ke sledování
spotřeby energie systému by bylo možné použít externí hardware monitory, ale ty nemají
požadovanou granularitu, mohou měřit spotřebu energie pouze jako celek a nejsou běžnou
součástí dodávaného hardwaru u zařízení. Místo toho používáme čistě softwarové řešení
využívající Running Average Power Limit (RAPL), což je funkce dostupná v moderních pro-
cesorech Intel (zavedená v generaci procesorů Sandy Bridge) a v současné době podporovaná
i některými procesory AMD. Toto rozhraní prokazatelně [23, 28, 22] poskytuje vysoce kval-
itní údaje o spotřebě energie s vysokou úrovní granularity. Pro poskytnutí kontextu pro
spotřebu energie sledujeme systémová volání. Stávající výzkum [44, 15] ukazuje potenciál
systémových volání k poskytnutí potřebného kontextu pro spotřebu energie. Implementace
výsledků zmíněného výzkumu v plném rozsahu je mimo rozsah této práce, proto používáme
mnohem jednodušší přístup, který přesto demonstruje potenciál energetického profileru. Ke
sledování systémových volání a vzorkování údajů o spotřebě energie používáme technologii
eBPF. Ta umožňuje spouštět programy v sandboxu1 v privilegovaném kontextu, jako je
linuxové jádro. Použitím eBPF dosáhneme vysoké granularity vzorkovaných dat, přičemž
výkon profilovaného softwaru ovlivníme jen minimálně. Při testování jsme mohli vzorkovat
spotřebu energie rychlostí tisíce vzorků za sekundu, aniž bychom významně ovlivnili výkon
profilovaného procesu. Společně s profilerem jsme implementovali i nástroj pro vizualizaci
výstupních profilovacích dat pomocí knihoven jazyka Python, jako jsou Pandas, Seaborn a
Matplotlib. Vytvořené grafy zahrnují heatmapu nebo vodopádový graf.

1prostředí pro spuštění software s omezenými privilegii za účelem bezpečnosti



S vytvořeným profilerem jsme provedli řadu experimentů, které ukazují jeho možnosti.
Jako předmět testování jsme použili grafický shell GNOME Shell, protože se jedná o netriv-
iální software využívající všechny obecné hardwarové komponenty (CPU, RAM, GPU),
který je velmi náchylný na režii způsobenou profilery. Pro experimenty jsme použili je-
den testovací scénář, ale měnili jsme prostředí, ve kterých byly experimenty vykonávány,
abychom zjistili, jak moc ovlivní výsledky profileru a jak moc je profiler náchylný na šum.
Experimenty ukázaly, že profiler dokáže úspěšně lokalizovat zdroje vysoké spotřeby profilo-
vaného softwaru a že rozdíly běhových prostředí mohou ovlivnit kvalitu výsledných profilů.
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Chapter 1

Introduction

Nowadays, resource consumption of software is increasingly becoming a concern for users
as well as software developers. With mobile devices dominating the electronics market the
need also for having optimal resource consumption is more than clear, but the same need
applies to other types of devices. Personal desktops, servers (mainly in the HPC space),
IoT devices or other smart machines need to perform efficiently as well.

There is quite a high number of different resources a software can consume. For many of
these one can use an abundance of existing tools analysers to cover most, if not all, use cases.
However, many of the resources are yet to be properly research. A resource lacking well
established tools is energy consumption. Resources like CPU or memory are being optimized
for in most software as their are the easiest to optimize for. If a software developer had
in their toolbox a tool for quick, reliable and detailed analysis of their software energy
consumption, they could start optimizing the software for optimal energy consumption as
well. Optimizing for performance can often lead to overheating and in-general unfavourable
execution time/energy consumed ratio which optimizing for energy consumption could help
to mitigate.

Currently, most tools that support measuring energy consumption do not provide de-
tailed enough information and lack any context. We see this as an opportunity to make
use of current state-of-the-art technology and existing research to create an open-source
profiler for detailed profiling of energy consumption. We believe such profiler could be used
as a stepping stone for further research, especially if employed in some wider performance
analyses project.

In this work we build on the research of the domain of energy profiling and different
technologies and techniques for profiling energy consumption. We will apply these in a
novel open-source energy profiler and a reporter of its findings with support for non-trivial
visualizations. With the created profiler we then conduct a list of experiments to showcase
its capabilities and demonstrate the usefulness of knowing energy consumption. As the last
step we want to integrate the created profiler in Perun, a performance version system.

Structure of the Thesis Chapter 2 summarizes existing research related to the areas
of energy profiling and energy-efficient programming. The performance tracker Perun is
introduced in Chapter 3. Chapter 4 explains the eBPF technology, how to use and how it
is used in this work. Chapter 5 cherry-picks technolgies and approaches to energy profiling
that will be leveraged in this work from the research in Chapter 2. Chapter 7 covers the
technical details of the resulting profiler and a reporting tool for creating visualizations of
the profiled data. We explain the profiler’s architecture and data format, how well does it

6



perform, and how exactly the visualizer works and what does it produce. The last Chapter
8 showcases on several existing open-source projects the capabilities of the created profiler.
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Chapter 2

Background and Related Work

The task of software profiling is a complex one and researching a novel profiling approach is
outside the scope of the thesis. Instead, this thesis heavily relies on research conducted in the
past, mainly in the area of energy consumption profiling. Past research spans widely from
exact approaches to profiling, to analysis of knowledge of developers on the topic of energy
profiling. In this section we will briefly introduce the field and list selected related work. The
related work is organized into three categories consisting of knowledge of developers about
energy consumption (Section 2.1), programming-language-specific insights into their energy
profile (Section 2.2), and existing approaches to energy profiling (Section 2.3). Additionally,
research of side-channel attacks (Section 2.4) is mentioned as this group of attacks exploits
weaknesses in software that could potentially be detected using the results of this thesis.

A great introduction to the scientific research of energy profiling is an article by Pinto
and Castor about energy efficiency [46] where the authors discuss the general need to focus
on the energy efficiency of software, the need to educate developers about the topic, and
the existence of various research in the area. This chapter is based on this article and the
research the authors reference in it.

2.1 Knowledge of developers

Profiling is a type of dynamic software analysis that requires from the developers deep knowl-
edge of the problem domain to be able to discern what information needs to be collected
and what the results of the analysis mean. Energy profiling being a specialized domain of
profiling makes it potentially an even more difficult type of analysis.

Pinto et al. [46] conducted a survey on a sample of software developers with the goal
to understand their perceptions about software energy consumption issues. The results
of this survey uncovered that while 67% of the respondents do care about energy-related
features, only in 50% of the cases when the respondents addressed energy-related issues in
a mobile application only a fraction of the respondents used specialized tools and the rest
of them depended on their own perception of an improvement. The sources of insight into
solving the energy-related issues were mainly non-empirical, e.g. official documentations,
StackOverflow, YouTube, blogs and other sources. These results make it clear that there is
a lack of tools for developers to make informed software changes to address energy-related
issues.

Pang et al. [43] conducted a survey yielding similar results. The authors summarized
the results of the survey into 4 takeways for programmers: (1) having limited awareness of
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software energy consumption (2) lacking knowledge of reducing software energy consumption
(3) lacking knowledge of software energy consumption and (4) not being aware of software
energy consumption’s causes.

The conducted surveys suggest that software developers are under-equipped in both tool-
ing and knowledge to correctly and accurately detect, analyze and fix energy consumption-
related issues in software. There is a need for an easy-to-use tool providing detailed insight
into the energy profile of software.

2.2 Energy efficiency of software constructs

Data structures are a vital part of any software and their knowledge is one of the fundamen-
tals computer science students are taught. Common knowledge is, for example, that time
complexity (be it asynmptotic or amortized) of operations differ largely on the type of un-
derlying data container. Time complexity is one of many useful information for determining
the performance and potential energy consumption, but it is not the only one. Performance
and energy costs of different data structures, abstractions, threading models and more have
been the target of a large number of researchers over the years.

Many papers analyze energy profiles of different software constructs. Pinto et al. [48]
analyzed the energy efficiency of several implementations of data structures (lists, sets, and
maps) in Java and their findings show significant differences. For example, an alternative
implementation of a hashtable (ConcurrentHashMapV8) yields up to 2.19x energy savings
in micro-benchmarks and up to 17% of savings in real-world benchmarks over the old im-
plementation (ConcurrentHashMap). Hasan et al. [24] similarly studied the efficiency of
data structures in Java in three different implementations. Using the gained knowledge,
the authors created worst-case and best-case scenarios in several open-source libraries and
applications. The results ranged from minimal differences of less than 1%, and up to 300%,
in energy consunmption efficiency. Lima et al. [33] studied the energy efficiency of different
data structures in Haskell. The results showed both marginal (below 1%) and significant
(over 25%) differences in energy consumption and execution time when a different data
structure with similar/same API was used.

Liu et al. [34] conducted an empirical study on how data access patterns, data precision
choices, and data organization affect energy consumption in Java. Additionally, the au-
thors studied how various application-level data management features respond to Dynamic
Voltage and Frequency Scaling (DVFS ). Among their findings is that Object-centric data
grouping can be less energy efficient than Attribute-centric data grouping, and that down-
scaling a CPU often leads to worse results in both performance and energy consumption.
The down-scaling of a CPU lead to better results in energy consumption mainly in cases of
programs performing excessive number of I/O operations.

Lima et al. [33] also studied three different thread management constructs and data
sharing primitives in Haskell. The results show differences in energy consumption in tenths
of a percent and show that there is no universaly better solution. Choosing the correct
construct depends on the context of the specific application and profiling is needed to identify
the most suitable constructs. Pinto et al. [47] performed an empirical study analyzing energy
consumption of different thread management construct. Their findings corroborate to the
fact that faster execution times do not always lead to lower energy consumption. In fact,
the opposite is usually the case. The curves for the execution time and the consumed energy
depending on the number of used cores are not the same. The execution time curve usually
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display an inverse logarithmic shape while the consumed energy curve display usually a Λ
(lambda) shape.

Implementation details of software can significantly affect ways energy consumption of
software and there are often no universally applicable solutions yielding optimal results.

2.3 Energy profiling techniques

Aggarwal et al. [15, 14] explored in their work the use of system calls to detect changes
in the energy profile of software across different versions. Their findings show that system
calls are related to power consumption. Combining system call profiles with statistical
methods gives a developer an easy-to-use tool capable of accurate assessment. The model
authored by Aggarwal et al. achieved at least 80% accuracy of detecting differences in power
consumption across different versions.

Pathak et al. [44] created a fine-grained energy profiler for mobile devices. They explored
the granularity of energy accounting for the different components in a mobile device and
asynchronous power behaviour of some modules (e.g., GPS, WiFi and Bluetooth modules).
They based the model, similarly to Aggarwal et al. [15, 14], on a system call power model
which provided them with fine-grained source data. The maximum measurement error
reached only 6% for all tested applications. The sample of tested applications consisted of
both simple (e.g. a Sudoku game) and complex (e.g., Angry Birds or Facebook) applications.

Li et al. [32] created a solution for calculating the energy consumption of single lines
of code in Android applications. Using the combination of external power meters readings,
program analysis, and statistical modelling the authors created a highly accurate solution.
The error in the calculated energy values were within 10% of the ground truth measurements
and the statistical models had a high 𝑅21 average of 0.93.

The research and energy profiling techniques in this section are further discussed in
Chapter 5.

2.4 Side-channel attacks

In this section we’ll introduce one of the application fields of exploiting energy consumption
in practice –side-channel attacks. They are a family of attacks relying on physical parame-
ters of the compromised system, such as electromagnetic emissions, execution time, power
consumption [50] and others. Two of the most common techniques of side-channel attacks
are the following.

Simple Power Analysis (SPA) is a technique involving direct interpretation of power
consumption measurements collected during critical operations. The collected measure-
ments are interpreted directly and allow to differentiate between kinds of operations (e.g.,
multiplication/squaring). The technique is simple as it does not involve any post-processing
or more involved measuring. Defence mechanisms in hardware (e.g., protective cases) and
software (e.g., branch-less programming, noise generation) are quite effective at limiting the
susceptibility to the attack. The intention is to lower the power consumption variations
such that SPA will not yield any key material. [30, 31]

1coefficient of determination
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Differential Power Analysis (DPA) is a technique consisting of two phases: data col-
lection and data analysis. The data collection phase is similar to SPA and the collected
information is usually the device’s energy consumption. The second phase involves sta-
tistical analysis and error correction techniques. Their application enables to identify key
material at a much smaller scale. Defence against DPA involves several approaches, e.g., re-
ducing signal sizes, introducing noise into power consumption measurements, and designing
cryptosystems with realistic assumptions about the underlying hardware. [30, 31]

A recent example of a real side-channel attack is hertzbleed [55] which is based on a proof
that Dynamic Voltage and Frequency Scaling (DVFS ), power consumption and currently
processed data directly affect each other. This allows for a remote timing attack where the
attack side-channel is the execution time. The authors published along with their research
paper the source code for their programs capable of reproducing the research side-channel
attack on GitHub [58].

There is a large number of existing projects and solutions both open-source and propri-
etary for experimenting with side-channel attacks. Some of them are:

• Pysca, a toolbox for advanced differential power analysis of symmetric key crypto-
graphic algorithm implementations [29]

• Jlsca, a side-channel toolkit in Julia [18]

• ChipWhisperer, the complete open-source toolchain for side-channel power analysis
and glitching attacks [2]

• eShard, a comprehensive Side Channel analysis solutions covering profiling and non
profiling attack techniques, including deep learning [7]

Prevention of side-channel attacks is difficult and involves several, often only partially
related, approaches. One of them is lowering power consumption variations. The result of
this thesis could potentially help to uncover areas for improvement in this regard. Integration
in a performance version system such as Perun (see Chapter 3) could provide high accuracy
(using post-processing and visualization modules) and automation (by integrating Perun-
based testing into CI systems).
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Chapter 3

Perun

Performance Under Control (Perun) is an open source Performance Version System used
for continuous tracking of a project’s performance [20]. The project integrates with VCSs
like Git or SVN, thus keeping performance testing closely tied to it. Perun also provides
a tool suite for specification of test runs, performance metrics collectors, performance data
postprocessors and analyzers. The results of this thesis will be in near future integrated
in Perun. To provide a better understanding of the content of the work, we will provide
an overview of Perun (Section 3.1), describe its architecture (Section 3.2) and workflow
(Section 3.3) in the following sections.

3.1 Overview

VCS track how the code base of a project evolves, how the functionality changes, provides
versions snapshots (e.g., tags) and often provide additional generic functionality in order to
satisfy as many needs as possible. These systems are often flexible enough for keeping track
of additional data but they are not optimized for such use cases. Perun fills the gap for
tracking a project’s performance by using VCSs to gain insight into a project development
history and store its results into a .perun directory in the project tree (similarly to Git
storing its state in a .git directory).

Perun offers the following advantages over the sole use of VCS or databases [20]:

• Context. Results of test runs (so called performance profiles) are tied to an exact
version of the corresponding VCS, thus providing the necessary context (e.g., changed
lines of code) to focus the analysis efforts on the recent differences in the source code
only.

• Automation. Manual analysis is a common activity, but not in the context of au-
tomated test system. Perun provides a concept of jobs for defining test runs and a
concept of hooks reacting to VCS events (e.g., commit, push, tag).

• Genericity. Every project is different and their expectations of Perun may vary.
Perun thus provides a framework allowing for a straightforward extension of its ca-
pabilities (collectors, postprocessors and visualisations) via modules. Its data format
(based on a JSON notation) is flexible enough for a quick adaption.
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• Ease of use. Perun is available as a CLI1 application with commands similar to
common VCS applications, which lowers the learning curve of using the tool.

3.2 Architecture

Perun’s architecture, illustrated in Figure 3.1, is made of four main components: logic, data,
check, and view. The main components are complemented by a collection of utility methods
as well as move advanced or specialized features: VCS, workloads, fuzzing, etc.
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PERUN

HEAP
MAP

GUI CLI
FLAME
GRAPH

...

VCS

GIT

SVN

...

PVCS

PROFILE
Regex

...

Memory

Time
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Normalizer
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LI

ZE
D

SVN

COLLECTORS

POSTPROCESS

Figure 3.1: An overview of Perun’s architecture showing its main components, VCS inte-
grations and the flow of data in the program. [21]

Logic is responsible for the generation of performance profiles, automation (hooks) and
higher-logic manipulations [45, 21]. Its two major components are:

• Collectors collecting performance data. They can be implemented either as wrappers
of existing profilers and utilities or they can be fully-featured profileres on their own.
Notable collectors are: trace collector, complexity collector, or the simple time collector.

• Postprocess applies various statistical analysers to the collected performance pro-
files. Notable postproceessors are: moving average postprocessor, regression analysis
postprocessor or clusterizer postprocessor

Data is the core of Perun –performance profile manipulation is done in this component
together with its storage in a VCS. It is the middleware between logic and view. [45, 21]

1Command Line Interface
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Check implements various performance regression detections across different revisions
(profiles) of a project. Several detection methods are available due to the high sensitivity
of the used statistical techniques to the type of analysed data. Notable detection methods
are: linear regression, integral comparison, or average amount threshold. [45]

View provides means for the collected and processed performance profiles to be visualized.
Some of the visualizers are: bars plot, flame graph or scatter plot [45, 21]

3.3 Workflow

Perun’s workflow can be illustrated in a series of steps the user should perform. The de-
scription of these steps is based on [45, p.24]. See Figure 3.2 for a visualization of Perun’s
workflow.

Figure 3.2: An illustration of the Perun workflow on a project repository using the Git
VCS. [21]

The steps of an usual Perun’s workflow can be described as follows:

1. We initialize a new Perun repository in a project managed by a VCS using perun init
(the initialized Perun repository is not managed by the VCS).

2. We configure the initialized Perun repository and select the desired collectors, post-
processors, workloads and other options.

3. We make changes to the tracked project and commit them into VCS (this may trigger
the next step automatically depending on the configuration from the previous step).

4. We collect raw data using either the pre-configured collectors or using a manually
selected collector using perun collect. The raw data are stored as a profile in the
Perun repository.

5. We optionally process the raw data using either the pre-configured post-processors
(e.g., regression analysis, clusterizer) or using a manually selected post-processor using
perun postprocessby. The processed data are stored in the current profile in the
Perun repository.
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6. We compare the current profile with profiles paired with previous revisions of the
project using either the pre-configured degradation checker (e.g., integral comparison)
or a manually selected degradation checker using perun check. The check is done
only for matching pairs of tested 𝑏𝑖𝑛𝑎𝑟𝑖𝑒𝑠+𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠+ 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠. The results
of the check are stored as a new object in the Perun repository.

7. We assess the severity, location and confidence parameters of reported potential per-
formance changes.
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Chapter 4

eBPF

Super powers have finally come
to Linux.

Brendann Gregg

eBPF is an instrumentation framework allowing to run sandboxed programs in a privi-
leged context like in the Linux kernel [8]. It allows to extend the capabilities of the kernel
without changing the kernel source code or loading custom kernel modules. Efficiency and
security of the executed programs are ensured thanks to JIT1 compilation and a verifica-
tion engine. We will use the technology in Chapter 7 for the implementation of profiling
capabilities of the energy profiler and thus we first briefly introduce its capabilities and
features.

4.1 Overview

At the core of eBPF stands a virtual machine running in a kernel of an operating system.
This virtual machine has its own instruction set and clearly defined rules for programs
running in it. Rules are set because a) all eBPF programs have to be guaranteed to
finish, b) memory accesses are typed and bounded, and c) programs can have at maximum
BPF_MAXINSNS instructions (4096 by default). These rules are necessary for the verifier to
be able to reliably and quickly check all loaded programs. A program can be loaded using
the bpf() system call which accepts eBPF bytecode. Such bytecode can either be hand-
crafted or generated. The standard compiler for generating the bytecode is Clang compiler
containing a eBPF back-end.

eBPF programs run in kernel-space and very often they need to be configured before
running or share data at runtime with user-space. For such purposes one can use so called
maps. They are generic storage types in kernel-space available to eBPF programs and user-
space. They can be used as hash tables, arrays or stacks. We can also use them for storing
per-CPU data. A special map is ring buffer (BPF ringbuf). It is ideal for continuous data
delivery from kernel-space to user-space (e.g., for logging). It offers great performance and
ensures data order.

We mentioned that an eBPF program bytecode needs to be loaded and often initialized
before running. Instead of accomplishing that manually using the bpf() system call this

1Just-In-Time
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can also be accomplished using a loader. A loader takes care of loading an eBPF program,
its initialization and how it is run.

After a eBPF program is loaded and verified, it is then further submitted to JIT2 compi-
lation that optimizes the performance of the program. Overall, eBPF is an instrumentation
framework with excellent performance, high reliability and security, clear boundaries for
use, and straightforward ways to use.

Figure 4.1: A diagram of eBPF architecture and how technologies utilizing it are struc-
tured. [8]

4.2 Developer toolchains

Writing eBPF bytecode by hand is not a recommended venture since the kernel ecosystem
keeps evolving at an incredible pace. A possible solution is to leverage abstractions built
on top of eBPF like bcc (4.2.1), bpftrace (4.2.2), or libbpf (4.2.3), providing a more expres-
sive environment for writing eBPF programs. The abstractions universally depend on the
Clang/LLVM toolchain implementing an eBPF bytecode backend for compilation of eBPF
programs.

4.2.1 BCC

BPF Compiler Collection (BCC ) is a toolchain providing C, Python
and Lua interface for writing eBPF programs. The BCC toolchain is
based on the LLVM toolchain. It provides a BPF-specific front-end for
C, making it easier to write valid eBPF programs. Along the C language
front-end, additional front-ends for Python and Lua are provided [9].

Since 2020, the Python interface of BCC is considered deprecated
for writing new performance tools [17]. It is recommended to use the C
interface and bpftrace for quick eBPF scripting.

2Just In Time
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4.2.2 bpftrace

bpftrace is a high-level frontend for eBPF utilizing BCC for interfacing with the eBPF
Linux system. It is ideal for writing one-liners and short scripts. The bpftrace language is
inspired by awk, C language and tracers like DTrace and SystemTap. [1]

An example of a bpftrace one-liner counting the number of page faults by process is:

$ bpftrace -e ’software:faults:1 { @[comm] = count(); }’

4.2.3 libbpf

libbpf is a user-space C/C++ eBPF loader library providing APIs for interacting with the
eBPF Linux system. libbpf bootstraps the loaded eBPF object file, allowing for hooking up
to different phases of eBPF program lifetime, and providing useful API similarly to BCC
(albeit not as high-level). The development of libbpf over the years lead to closing the gap in
features between BCC, fixing issues in the API or addressing scenarios of incompatibilities
between different versions of the kernel. This work culminated in the release of version 1.0
in August 2022. [39]

The lifetime of eBPF programs has four phases for which libbpf provides a way to define
them and execute them. These phases are [37]:

1) Open phase loads up the eBPF object file into the memory, upon all present eBPF
programs, maps and global variables are made available. It allows one to make ad-
justments to the structures because the program has not been loaded into the kernel,
yet.

2) Load phase. creates eBPF maps, verifies the programs and loads them into the
kernel, but the programs are not executed, yet. At this phase it is still possible to
adjust the state of eBPF maps.

3) Attachment phase. starts the eBPF program by attaching it to its defined hook
points.

4) Teardown phase. detaches and unloads eBPF programs from the kernel. All eBPF
resources (e.g., maps) are freed.

bpftool

To make it convenient for programmers to work with eBPF programs exists the bpftool
tool. It serves for inspecting and manipulating eBPF programs and maps. One can also
use it to generate a skeleton header file from an object file of an eBPF program to ease the
development of User-space programs. The generated header file contains the eBPF program
bytecode, provides functions for loading it and provides typed access to all maps, programs,
global variables and such.

4.3 BPF CO-RE

BPF Compile Once –Run Everywhere (BPF CO-RE ) [38] is an approach to creating eBPF
programs that solves many issues with portability of eBPF programs. The technology was
introduced at the LSF conference in 2019 [5]. Many eBPF tools originally written using
BCC or other toolchains have already been converted to BPF CO-RE. [38]
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Portability of eBPF programs is troublesome. The user-written eBPF programs need
to work within the set kernel environment over which they have little to no control. Any
program requiring access to raw internal kernel data can not rely on any notion of stability
from the kernel. BCC tackles this problem by embedding an eBPF program in a user-space
binary and compiling it on-the-fly when requested. The compilation uses Clang/LLVM,
embedded in BCC, and kernel headers. Programs created by BCC then require it to be
installed on the system to compile the programs on-the-fly and the programs are inherently
unstable due to possible ABI/API change in the Linux kernel (e.g., they can contain unhan-
dled cases of renamed structures across kernel versions). Note that, kernel headers are not
installed on systems by default which are required for Clang/LLVM to be able to compile
an eBPF program. [38]

BPF CO-RE overcomes the portability problem of eBPF programs by leveraging several
functionalities in the used components: kernel info format (BTF ), compiler (Clang), and
user-space eBPF loader library (libbpf ).

4.3.1 BTF

BTF stands for BPF Type Format. It is a debugging data format which is an alternative to
the DWARF format. It achieves up to 100x size reduction over DWARF while containing all
necessary type information of C programs. Having such a space-efficient data format makes
it feasible for including it in Linux operating systems for the Linux kernel by default. The
information is available at path /sys/kernel/btf/vmlinux and can be used to generate a
C header file using the tool bpftool. [38]

4.3.2 Clang

The Clang compiler was extended with a certain feature. It makes it possible to track
field existence, removals, offset relocations or size changes. These bits of information are
then emitted for the eBPF program loader to pick up and use it for making the necessary
adjustments. [38, 37]

4.3.3 libbpf

Before loading an eBPF program and then submitting it to the verification engine, libbpf
inspects the eBPF object file and, if necessary, makes adjustments to it to match the BTF
information of the running kernel. These adjustments are done completely transparently
and automatically. [38]

4.4 eBPF in practice

Since its creation eBPF has been constantly growing in popularity and the number of use
cases for it only keep growing. Nowadays it is possible to not just monitor and profile but
also change the behaviour of the kernel at runtime [4]. Some noteworthy eBPF projects
are:

• libbpf-tools and bcc-tools are collections of small but very useful eBPF programs con-
tributed by the members of the community made available for all users to use for
profiling. [9]
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• ebpf_exporter is a metrics collector/exporter for Prometheus [49] created by Cloud-
Flare. [11]

• bpfilter is a direct competitor of iptables and nftables. It offers a compatibility layer
translating iptables rules into eBPF programs while also offering the possiblity of
writing firewall rules in C. [19]

• wachy is a dynamic tracing profiler providing a TUI3. [10]

4.5 Alternative technologies

In this chapter we’ve introduced the eBPF instrumentation framework, but there exist al-
ternative instrumentation frameworks. In this section we’d like to introduce some of the
alternatives we’ve considered when selecting the appropriate technology for the implemen-
tation of tracing capabilities of the created energy profiler.

eBPF SystemTap Pin
Kernel-space instrumentation ✓ ✓
User-space instrumentation ✓ ✓ ✓
Instrumentation stability ✓ ✓

Instruction set specific support ✓
Requires kernel debuginfo ✓

Relies on recent kernel version ✓ ✓

Table 4.1: A comparison of instrumentation frameworks eBPF, SystemTap and Pin

SystemTap is a general-purporse tracing and profiling framework for the Linux kernel.
It supports a large number of mechanisms for gathering data about both the kernel and
processes running on the system. In general it is regarded as one of the most powerful
profiling frameworks. SystemTap instruments code by loading a a custom kernel module
into the Linux kernel. These modules are created automatically by SystemTap from custom
scripts which are then first transpiled into the C language. For most of its functionality,
SystemTap requires for the Linux kernel to be present together with the SystemTap program.
And because SystemTap is implemented out-of-tree of the Linux kernel and is not designed
with safety/resiliency first, it has a history of causing system lock ups, freezes or even kernel
panics. [36]

Intel Pin is a dynamic binary instrumentation framework developed by Intel enabling
the creation of dynamic program analysis tools. Pin is mainly used in tracing of User-space
applications without the need to recompile the traced binaries. It also provides cross-
platform support and in general offers stellar performance. Pin instruments code on the
instruction level by using JIT compiler. Pin ensures that the original behaviour of the
analysed software is kept even during profiling. Pin operates on a level above the operating
system and thus can only capture user-space code. It also supports only a limited number
of instruction sets (IA-32, x86-64 and MIC). [36, 6]

3Text-based User Interface
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Chapter 5

Existing Methods and Technology

In Chapter 2 we introduced a number of methods for energy profiling. In this Chapter we
will further describe them in the context of this work. We will emphasize on their strengths
and limitations and discuss their potential usage for the created energy profiler.

5.1 RAPL

Running Average Power Limit (RAPL) is an interface introduced by Intel in the Sandy
Bridge architecture of Core processors. It allows controlling the power consumption lim-
its. This ability to control also comes with the ability to monitor. Originally this feature
was backed by purely software models of consumption. With the Haswell architecture the
interface became backed by hardware power meters embedded in the chip which signifi-
cantly raised the accuracy of the power readings. The interface is made of non-architectural
MSRs. [28]

This thesis is set in the context of the Linux kernel, so the following paragraphs will use
its terminology for the RAPL interface (mainly domains).

The RAPL interface exposes several domains (visualized in Figure 5.1):

a) cores shows the power consumption of all cores in a package,

b) pkg shows the power consumption of all cores in a package together with LLC,

c) gpu shows the power consumption of so called uncore device (on desktop this typically
corresponds to integrated GPU),

d) dram shows the power consumption of DRAM,

e) psys shows the power consumption of the whole platform or System-on-Chip (SoC).

Figure 5.1: Power domains supported by RAPL (visualization based on [28])
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The different domains provide a reasonable level of insight into a systems energy con-
sumption. But it does not cover the whole system. The interface is closely tied to the CPU
and the components closely tied to it. It does not provide insight into other areas of the
system including peripherals, Wi-Fi modules, Bluetooth modules and more. Relying purely
on the RAPL interface as the only source of energy consumption will cause the resulting
profile not to have all energy consumption information of the system. Despite the fact, prior
art [15, 14, 44] shows that the power readings correlate well with the whole system’s power
consumption and thus the data incompleteness is not fatal.

The interface was first made available in the Linux kernel in version 3.14 [57] and it was
an interface implemented only for Intel CPUs. In a later version of the Linux kernel the
interface has been generalized so that other hardware drivers can make use of it. This made
it possible for AMD to add support for their AMD Ryzen processors (though in a limited
form). The AMD implementation originally exposed only the package domain and recently
exposed also the core domain. If the other MSRs for other domains are present, they are
deemed unreliable enough to not be made available.

The precision of the RAPL interface is important for assuring high quality profiling data.
It does differ across vendors and architectures. The interface exposes for all domains three
values: a) an actual value b) unit usually as a string with the name of the unit c) scale
used for scaling the value to fit the unit . E.g., on Intel Skylake processor architecture the
unit is Joules and its scale is 2.3283064365386962890625e-10, making a single increment
of value an increment of 0.23 nJ (nano-joule).

High precision of the RAPL interface is not a guarantee of high accuracy. A number
of researches [23, 28, 22] on the accuracy of the RAPL has already been conducted. The
results generally show that the interface provides data with high level of correlation with
data measured by AC power meters [28, 22]. The quality of data provided by the interface
has even been increased, since its first introduction in the Sandy Bridge architecture, thanks
to the transition from pure software models to fully integrated voltage regulators (FIVR) [23].

5.1.1 Reading the values

In the Linux kernel there exist several ways of reading the hardware information. In the
following, we will list these ways together with their basic principles and caveats.

For the purposes of this thesis a single optimal approach needed to be chosen.

sysfs

The first approach uses of sysfs, a pseudo file system in the Linux Kernel available at the /sys
path in. In particular, the RAPL interface is available under /sys/class/powercap/intel-rapl.
This approach is the one with the lowest entry barrier as it only involves reading the con-
tent of files and thus requires no special knowledge. But for the purposes of this work this
approach is not optimal due to its inefficiency for high frequency measurements. The ineffi-
ciency is caused by the file API not being designed for high frequency re-reads of the same
file.
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perf_events

Perf is a tracing and profiling tool developed in parallel with the Linux kernel allowing
instrumentation of CPU performance counters, tracepoints, kprobes1, uprobes2 and a lot
more. Alternatively it can be referred to as perf_events. One can make use of perf
directly using the perf CLI application which has a broad offering of features or using the
linux/perf_event.h C header file to create individual applications (for more advanced
usage). perf_events are quite efficient at being used for high frequency tracing.

A minimal example of using perf_events from C code is:

#include <linux/perf_event.h>
#include <sys/syscall.h>
#include <unistd.h>

struct perf_event_attr attr;
long long clock;
int fd;

attr.type = PERF_TYPE_SOFTWARE;
attr.config = PERF_COUNT_SW_CPU_CLOCK;
attr.freq = 1;
attr.sample_period = frequency;

fd = syscall(SYS_perf_event_open, &attr, 0, 0, -1, 0);
read(fd, &clock, sizeof(clock));
close(fd);

RAPL perf events belong to a certain category of events: Kernel PMU3 events. Since this
category of events depends on the hardware architecture, their availability is not assured.
One can check the availability of different perf events using the perf CLI application by
using the perf list command or one can search the content of sysfs (/sys) for the different
events.

The issue of watching multiple PMU perf events is that it cause so called time multi-
plexing. During the multiplexing the kernel switches which event uses the capabilities of the
hardware. This phenomenon skews the monitored data which need to be scaled to at least
approximate of the true data. Thankfully, this phenomenon does not happen with RAPL
because at least on Intel architectures the interface has its own dedicated counters.

Comparing the approaches

To demonstrate the two approaches to reading energy consumption via the RAPL interface,
we will conduct a series of benchmarks using different sample programs utilizing the different
approaches. In total we will conduct three benchmarks:

a) sysfs, where a C program reads at a set interval (using <sys/timerfd.h>) of 9999Hz
the content of RAPL files in sysfs,

1kernel probes
2user probes
3Performance Monitoring Unit
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b) perf-userspace, where a C program reads at a set interval (using <sys/timerfd.h>)
of 9999Hz perf events of all RAPL domains,

c) perf-ebpf, where a C program reads at a set interval of 9999Hz perf events of all
RAPL domains using an eBPF program.

For this benchmark we use the same testing environment as in Chapter 8. In the bench-
marks the provider of the results are the perf and bpftool utilities. The perf utility is run
as perf stat -e cycles -e instructions -e L1-dcache-loads -e LLC-load-misses -p
<benchmark-pid> –timeout 5000 where cycles, instructions, L1-dcache-loads, and
LLC-load-misses are the benchmarked statistics, <benchmark-pid> is the PID of the bench-
marked program which was started prior to the start of the perf utility, and 5000 is the
duration in milliseconds for which the perf utility is run. The bpftool utility is run
as bpftool prog profile name collect_rapl_info duration 5 cycles instructions
l1d_loads llc_misses where collect_rapl_info is the name of the profiled eBPF pro-
gram, 5 is the duration in seconds for which the bpftool utility is run, and cycles,
instructions, l1d_loads, and llc_misses are the benchmarked statistics. The used statis-
tics are based on the bpftool utility which only supports a limited number of statistics and
can only measure four at a single time. In benchmarks sysfs and perf-userspace we only use
the perf utility as the source of the results but in benchmark perf-ebpf we use both the
perf and bpftool utilities because effectively there are two programs running during the
benchmark. One in User-space and the other in Kernel-space.

Table 5.1 shows the results of the benchmarks. The perf-ebpf test case contains two
rows of values where the top row contains the statistics for both the User-space and the
Kernel-space (eBPF ) programs and the bottom row contains the statistics for only the
eBPF program. The results show that the most inefficient approach to high-frequency
reading energy consumption via the RAPL interface is the sysfs approach. Of the two
programs utilizing perf events the more efficient is the one using eBPF reading the perf
event counters in Kernel-space.

Based on the results of the benchmarks we will use for the implementation of the energy
consumption reading capabilities in Chapter 7 the perf_event approach implemented using
the eBPF technology.

Benchmark cycles instructions L1-dcache-loads LLC-load-misses
sysfs 3, 795, 412, 368 3, 069, 819, 731 777, 323, 949 56, 504

perf-userspace 1, 174, 388, 152 769, 703, 008 191, 072, 023 50, 263

perf-ebpf 760, 739, 586 656, 435, 608 158, 702, 720 32, 285
49, 995 370, 994, 417 52, 538, 065 8, 491

Table 5.1: Results of the benchmarks the efficiency of the different approaches to reading
energy consumption values via the RAPL interface.

5.2 System calls

System calls are an interface for services of the operating system made available to the user.
The purpose of system calls varies greatly but they can be roughly classified into six major
groups: a) process control, b) file manipulation, c) device manipulation, d) information
maintenance, e) communications, and f) protection [51]. All programs, even if not directly,
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make use of system calls. This makes them a good candidate for giving energy usage the
context of why is energy being used at a certain point of time.

System calls can be traced in multiple ways. The commonly known approach uses the
ptrace() system call. This approach is for example used in strace, a tool dedicated to tracing
system calls. strace is a great tool but does not serve our purposes as we are also tracing
other domains than system calls. Another approach can make use of eBPF by attaching
an eBPF program to the tracepoint/raw_syscalls/sys_{enter,exit} tracepoints. The
details of using eBPF for tracing system calls is in Chapter 7.

While tracing, we’re interested in the system call ID, its entry and exit times, the cpu
they’re running on and their associated PID and TGID. We can use the entry and exit times
for rating the single system calls using energy values (RAPL). Using the CPU number, PID
and TGID we can further classify this information.

In this thesis we will only use the entry and exit time of system calls to calculate their
energy score. But more detailed analysis of system calls in the context of energy consumption
can lead to much more detailed and interesting results. We will describe on a high level
some of these analysis methods.

5.2.1 I/O operation bundles

All I/O operations in an operating systems are carried out using system calls. System calls
can be used to track single I/O operations but those operations often do not happen isolated.
Instead, often I/O operations happen in bulk. Reading a big file, reading multiple files for
the same purpose, writing to files in set intervals,. . . . The purpose of I/O operations differs
in the number of involved files/streams, how often they happen, in what intervals and what
is the size of read/written data. Detecting such bundles could help understand the energy
behaviour of the profiled software. [44]

5.2.2 Asynchronous Power Behaviour

Apart from the use of system calls for I/O or process management, they are used for general
interaction with all hardware components. And all hardware components have their own
energy behaviour. And only a selected few of these components make their energy behaviour
known to the kernel. And often they might not know the information themselves as they
might not have a dedicated power measurement module. Among such components can be
Wi-Fi modules, Bluetooth modules, GPS modules or fingerprint readers.

Pathak et al. [44] discuss how all the different hardware components often operate in
different modes. Each of these modes causes the component to enter a different power state
changing its energy consumption. For example, in a GPS module some of the different
modes could be: a) idle b) locating satellites c) location found (low accuracy) d) location
found (high accuracy).

Some modes of operation can be directly requested by the user (e.g., switching a Wi-Fi
module on/off) but some modes are assumed without being directly requested (e.g., a spin-
ning drive spinning after already reading a file). Pathak et al. [44] write about such modes
as tail state. Such states can contribute in a significant way to the total energy consump-
tion. System calls could be used to detect changes in modes of operation of these hardware
components, track their current state in finite state machines and use this information to
improve the accuracy of energy profiling.
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Chapter 6

Analysis of Requirements

In this chapter we give a brief summary of the intended functionality of the designed energy
profiler and we present a list of its formal functional and non-functional requirements. Some
of the requirements were inspired by existing works [45, 36].

6.1 Analysis of Requirements

This work aims to design a novel energy profiler and implement in a suitable way for
integration into Perun (see Chapter 3), a performance version system. Because Perun is
implemented in Python, we want to use Python as the implementation language of the
profiler as well. As for profiling, we want to make use of the eBPF technology for which the
go-to language is C, so the core of the profiler will be implemented as a C shared library.

Energy consumption. Energy consumption is a difficult metric to measure accurately.
Complete coverage of measuring energy consumption would require for voltage monitors
to be installed in every part of hardware in a system. That is practically unfeasible in
most systems. The RAPL (see Chapter 5.1) interface is currently the best combination
of accuracy and practicality for measuring energy consumption of a system. To read the
energy readings provided by the RAPL interface we will use perf_events which are sampled
in an eBPF program.

Runtime context. Without context, the measured energy consumption data will provide
minimal informational value and thus additional execution context needs to be provided. For
this purpose we chose to use system calls. To keep track of system calls executed by a process
we will use two eBPF programs tracking the start and end of system calls. Using system
calls as a context for energy consumption requires the adoption of a scoring algorithm. In
Chapter 5.2 we discuss a number of methods for utilizing syscalls in the context of energy
consumption. As the scope of this work is limited, we chose to implement a much more
trivial scoring algorithm.

Visualizations. Since we are creating a novel energy profiler with complex results, we
create will a reporting tool. The tool will be capable of creating text reports with brief
summaries of the results accompanied by suitable visualizations providing a visual aid for
understanding the results of the energy profiler.
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6.1.1 Functional Requirements

A high-quality profiler needs to, in general, meet certain criteria and an energy profiler has
its own set of unique requirements. We compiled a list of criteria that will guide our design
process and implementation of the energy profiler.

• FR_IU (Independent usability). The energy profiler is usable even when used as
a stand-alone solution.

• FR_PI (Perun integration). The energy profiler is integrated into Perun and
extends its functionality as one of its collectors (see 3.2).

• FR_BPF (eBPF technology). The energy profiler leverages the eBPF technology
to implement its profiling capabilities.

• FR_RO (Runtime overhead). The instrumentation overhead introduced by the
energy profiler as minimal as possible to obtain results close to the original program
performance.

• FR_PPT (Post-processing time). The processing of raw profiled data is fast to
keep the user experience as fluent as possible.

• FR_IT (Interpretation time). The interpretation of the profiling results is made
easy to allow swift iteration on the findings.

• FR_EDS (Energy domain sampling) The core premise of an energy profiler is
that it samples energy consumption.

• FR_EDC (Energy domain coverage). Because energy can be consumed by a
large number of components, the energy profiler covers as many of these components
to achieve the highest possible accuracy in energy readings.

• FR_EDSR (Energy domain sampling rate). Sampling energy readings at a
higher rate can raise the quality of the results.

• FR_SCT (System call tracing). System calls are used as providers of runtime
context for the energy readings.

• FR_SCS (System call scoring). System calls need to be put into the energy
consumption context using a scoring algorithm.

• FR_RR (Result reproducibility). The energy profiler produces the same, or at
least highly similar, results across repeated profiling sessions.

• FR_NS (Noise susceptibility). While energy readings can be affected by a high
number of factors, the profiler can leverage the runtime context to minimize the impact
of the noise on the precision of the readings.

• FR_VIZ (Visualization). The energy profiler provides a tool for interpreting the
generated profile data for further manual analysis.
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6.1.2 Non-functional Requirements

Aside from the functional requirements, every software has additional non-functional re-
quirements to keep the quality of the software at a reasonable level.

• NFR_SS (Storage space). The resulting profile data require minimal possible
amount of storage as smaller files are generally faster to load and process.

• NFR_MD (Minimal dependencies). The energy profiler uses only a bare mini-
mum of mandatory dependencies to lower the entry barrier for new users to use the
energy profiler.

• NFR_PCP (Profile Comprehensibility). The energy profiler outputs profile
data containing information about both the profiled system and the profiled process.

• NFR_RCP (Reporting Comprehensibility). The reporting tool provides com-
prehensive outputs with easy-to-understand names, legible formatting and easy-to-
read graphs.

• NFR_EU (Ease of use). The energy profiler generates a single file containing all
the necessary information for their interpretation. The reporting tool utilizes all this
information and does not require anything else. Both tools can be parametrised but
they provide sane defaults.

• NFR_RP (Results portability). The reporting tool generates the same results
regardless of the runtime environment. All the information it needs are provided by
the profile data and no machine-specific info should is used.
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Chapter 7

Design and Implementation

This chapter introduces an implementation of the novel energy profiler called sysrapl using
methods from Chapter 5 and using the eBPF technology from Chapter 4. At the beginning
of the chapter we describe its implementation (Section 7.1). Next we describe the imple-
mentation of a reporting tool (Section 7.2) called sysrapl-report capable of creating text
reports and visualizations. At the end of the chapter we discuss the performance (Section
7.1.3) and limitations (Section 7.3) of the created tooling.

7.1 Energy profiler

In this section we’ll present the different parts of sysrapl: (1) Engine, and (2) Post-proces-
sor . Engine is responsible for the instrumentation, and Post-processor converts raw data
generated by the Engine into a final profile in JSON format. A high-level diagram of the
profiler can be seen in Figure 7.1.

For the implementation of the energy profiler were used two programming languages:
Python and C. We chose Python because Perun (see Chapter 3) is implemented in Python
and thus using Python will help us ultimately achieve the FR_PI requirement. The C lan-
guage was chosen because it is basically the standard language for Linux system program-
ming and the libbpf library (see Section 4.2.3) we use for making use of the eBPF in-
strumentation framework is implemented in the C language. The build system used for the
project is Meson.

The profiler is implemented across these files:

• sysrapl.py containing the CLI, interface for the C shared library and the post-
processor implementation,

• sysrapl.c implementing the User-space side of the profiler which handles the instru-
mentation of eBPF programs,

• sysrapl.h defining data types and structures used in the project, and,

• sysrapl.bpf.c implementing the different instrumented eBPF programs for trac-
ing/sampling.

In this thesis we focus primarily on the FR_IU requirement rather than the FR_PI
requirement. We still structured the top-level of the implementation of sysrapl to mirror
the structure of Perun’s collector (see Section 3.2) to make future integration in Perun more
straightforward.
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Figure 7.1: Schema of the sysrapl profiler. The runtime of the profiler has two phases:
profiling and post-processing. The profiling phase instruments eBPF programs into the
kernel generating raw data. The post-processor then processes the data into the final profile.

7.1.1 Engine

The Engine is in charge of collecting raw performance data by instrumenting eBPF pro-
grams. In the model of a Perun collector it implements the collect() function.

Because it is implemented in C, it needs to be made somehow available in the Python
script (sysrapl.py). Python does support FFI for using shared libraries. There are mul-
tiple modules providing complex and robust capabilities, but in line with the NFR_MD
requirement, we chose to use the built-in ctypes module [3]. The module is ideal for simple
use-cases where minimum number of functions is called and a small number of structures
from the shared library is used as introspection of the loaded library is very limited. How-
ever, it has the major downside of requiring to know the absolute path to the shared library.
We overcame this limitation in a robust manner by making it mandatory to use the build
system to both build sysrapl and to install it.

The Engine, again in line with the NFR_MD requirement, only requires the standard
C library and the libbpf at runtime. The Engine provides a single function sysrapl_profile()
which serves as the entry-point for profiling. It takes as a parameter a structure used for
configuring the behaviour of the Engine (see Listing 7.1).

struct sysrapl_profile_opts {
char *output_file; // path to a file for outputing raw profiling data
int delay; // delay before starting attaching the instrumented eBPF programs
int filter_pid; // PID of the profiled process
int frequency; // Frequency at which energy readings are sampled

};

Listing 7.1: Structure for configuring the behaviour of Engine
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The Engine implements in total three eBPF profiling programs:

a) sys_enter() is attached to the tracepoint/raw_syscalls/sys_enter tracepoint.
It marks the start of a system call by using the current TID as a key in a hashtable
(map syscall_start) where the value is the time when the system call started (in
nanoseconds). The program only tracks a system call when the current PID equals to
the profiled PID.

b) sys_exit() is attached to the tracepoint/raw_syscalls/sys_exit tracepoint. It
marks the end of a system call by checking whether in the map syscall_start is the
current TID. If yes, the program reserves a chunk of memory in the Ringbuffer big
enough to hold the sysrapl_data_t type. In the chunk of memory is written the id
of the system call, its entry and exit times (in nanoseconds), the current CPU and the
current TID. Then the chunk of memory is submitted to the Ringbuffer.

c) collect_rapl_info() is attached to a perf event. This is a special case which re-
quires the program to be manually attached to a perf event during the setup of the
eBPF program. This program is intended to be attached to the cpu-clock software
event, which is always available. The software event can be configured with a fre-
quency, which in sysrapl is by default 99Hz, and can be configured using the CLI.
This fulfils the FR_RDS requirement. Every time this event is triggered, the eBPF
is run and all enabled RAPL perf events are sampled. And because all of these events
are CPU-independent, each needs to be sampled just once. All the sampled values are
then put into a memory buffer reserved in and then submitted to the Ringbuffer.

The implementation of the two eBPF programs: sys_enter() and sys_exit() fulfils
the FR_SCT requirement. The implementation of the collect_rapl_info() fulfils the
FR_EDS requirement.

The Engine’s sysrapl_profile() function operates in phases which are tied to the
lifetime of eBPF programs as bootstrapped by libbpf (see Section 4.2.3):

1. Open phase. The first step of the phase is to open a temporary file under /tmp
directory to contain the raw profiling data.

ò
Most Linux distributions mount /tmp as a Tmpfs, making the Engine
write the raw profile data into operating memory. This is desired due to
I/O on storage devices being generally more expensive.

The next step is to ”open“ the group of eBPF programs and start initializing the
read-only section of the programs. The read-only section of the created programs
contains:

• PID of the profiled process

• Booleans for controlling which RAPL domains to sample

• Maps (see Section 4.1) for:

– file descriptors of perf_event for every sampled RAPL domain (one map per
file descriptor),

– tracking of running system calls,
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– Ringbuffer for exchanging data between Kernel-space and User-space

Because not every machine supports all of the RAPL domains, a check needs to be
done, to only open the perf events that exist. This mechanism helps to fulfil the
FR_EDC requirement. And because the RAPL perf events are PMUs, their type
value and config value (see Section 5.1), used when ”opening“ the perf events, can vary
across machines, so during the check these values are collected. The values for RAPL
perf events can be found in Sysfs under /sys/devices/power. The present events are
then opened and marked as usable using the booleans in the read-only section. The
events are not enabled and are not put yet into the maps, as the programs are not
loaded in-memory, yet.

2. Load phase. Following the load of eBPF programs the maps of the sampled RAPL
perf events are populated with file descriptors of the present perf events. A Ringbuffer
is also created and assigned to the prepared map in the eBPF programs. The ringbuffer
is used for sending data from the eBPF programs running in Kernel-space to the
Engine running in User-space During the creation of the Ringbuffer a function is
assigned to it to handle data arriving from Kernel-space during polling. The function is
handle_ring_buffer() and it outputs the received data in the temporary file opened
during the Open phase.

To make the collect_rapl_info() program work, it needs to be attached to the
cpu-clock perf event. A helper function attach_perf_event_sampling() opens the
cpu-clock perf event and attaches the program to it.

If the profiler is configured to wait for a period of time before the start of profiling,
the profiler waits in this phase. This capability exists to help mitigate the effect of
noise caused by starting the tool or other software.

Right before the next phase, the RAPL perf events are reset, to ensure proper initial
values in the counters, and are enabled.

3. Attachment phase. Once an eBPF program is attached, it starts functioning right
away and can no longer be configured. In this phase the Engine enters a poll loop
where it waits for data to arrive via the Ringbuffer. When data arrive, the poll function
triggers a handler function, assigned to the Ringbuffer in the Load phase.

The polling continues until the user sends to the profiler the SIGINT signal.

4. Teardown phase. In this phase the different resources, including the eBPF programs
are cleaned up. The only resource left intact is the temporary file holding raw profiled
data.

7.1.2 Post-processor

The Post-processor is in charge of transforming the raw profile data into a readable format,
which can then be used for further analysis.

The Post-processor operates in two stages:

1. Processing of energy reading samples. In the raw data the energy reading sam-
ples contain values present at the time in the counters of the perf events. To make
sense of these values the Post-processor needs to scale these values using the scale
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assigned to every single perf event (see Section 5.1) to convert them to proper units
(usually Joules). After the conversion the values represent the energy consumed since
the last overflow of the counter. In further analysis we’re more interested in how
much energy was consumed during each sampled time window. So, two neighbouring
samples are used to calculate the difference between them and the result is assigned
to a time window.

2. Processing of system calls. After the previous stage the energy consumption of
different time windows hence computed. This stage uses this data to annotate energy
consumption scores to every single system call.

To fulfil the FR_SCS requirement this stage implements a scoring algorithm but as
explained in Section 6.1 the implementation is intentionally trivial. The steps of the
algorithm are:

1) Select a system call from the raw data.

2) Set the system call’s energy score to 0.

3) Find all time windows overlapping the system call run time.

4) Calculate the ratio of the runtime of the system call in the first time window.

5) Multiply the time window’s energy readings by the ratio.

6) Add the energy reading of the time window to the system call energy score.

7) Remove the first time window from the list of windows.

8) If there is another time window, go to step 4.

After the end of the two stages, the post-processor outputs the processed profile data in
the JSON format. By default sysrapl outputs the profile to stdout but it can be configured
to save it into a file. The advantage of this approach is that it can be used in pipes with
other UNIX utilities.

Profile data format

In previous sections we’ve mentioned that sysrapl outputs the final profile data in the
JSON format. In this section we’ll describe what information are put into the profile data
and what is its structure.

Machine information. Energy profiling varies largely between different hardware config-
urations, specific hardware models and what software runs on the hardware. In the profile
data sysrapl includes, alongside the information about the profiled process, the time when
it was profiled, the duration of the profiling session (in nanoseconds), and information about
the machine on which sysrapl ran. The system information are only high-level and created
by combining the output of platform.uname() and the content of /proc/cpuinfo. Includ-
ing this data satisfies the NFR_PCP requirement. Listing 7.2 shows a snippet from the
data JSON with a section containing this information.

{
"info": {

"process-name": "gnome-shell",
"pid": 1598,
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"time": "2023-04-26T09:03:46",
"duration": 30215400875,
"frequency": 99,
"host-info": {

"system": "Linux",
"node": "localhost",
"release": "6.2.9-300.fc38.x86_64",
"version": "#1 SMP PREEMPT_DYNAMIC Thu Mar 30 22:32:58 UTC 2023",
"machine": "x86_64",
"processor": "Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz"

}
},
...

}

Listing 7.2: info section of the final profile data format containing information about the
profiled software and the host system

Energy consumption samples. This section of the data JSON contains all data re-
lated to system-wide energy consumption: a) the unit and the scale of the energy values,
b) sampled energy domains, c) total consumption across all domains (corresponding to those
described in Section 5.1), and, d) a list of all sampled time windows with energy consumed
(using the unit and the scale in the profile). Listing 7.3 shows a snippet from the data JSON
with a section containing this information.

{
...
"rapl": {

"unit": "Joules",
"scale": 0.23283064365386963,
"domains": ["cores", "pkg", "ram", "gpu", "psys"],
"total": {

"time": 30151676016,
"cores": 5413635254,
"pkg": 28118835449,
"ram": 24002197265,
"gpu": 869750976,
"psys": 115713439942

},
"events": [{

"time": 921404653026,
"cores": 9521485,
"pkg": 22277832,
"ram": 11596679,
"gpu": 1647949,
"psys": 72692871

},...]
},
...
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}

Listing 7.3: rapl section of the final profile data format containing system-wide energy
consumption data

System calls. This section contains a list of all system calls ordered by their exit time.
Each item in the list contains: a) the system call ID, b) the system call name, c) the entry
time (in nanoseconds), d) the exit time (in nanoseconds), and, e) the energy consumption
data (using the unit and the scale in the profile). Listing 7.4 shows a snippet from the data
JSON with a section containing this information.

{
...
"syscalls": [{

"id": 39,
"name": "getpid",
"cpu": 2,
"tid": 2779,
"entry_time": 1202281290743,
"exit_time": 1202281292402,
"cores": 2796.828618969,
"pkg": 5082.4088385840005,
"ram": 3007.342549827,
"gpu": 120.293721702,
"psys": 18204.446818404

}...]
}

Listing 7.4: syscalls section of the final profile data format containing a list of all the traced
system calls

7.1.3 Performance

In this section we want to showcase the performance of sysrapl on a synthetic benchmark
to see how big of an overhead does the energy profiler introduce. As the benchmark we used
an open-source TCP server capable of handling simple echo messages implemented using
io_uring [25] coupled with an open-source TCP client application for testing such simple
servers [26]. In the benchmarks the provider of the results is the client application which
at the end of its runtime prints statistics collected during its runtime, where the statistics
show the number of requests sent and responses received.

For this benchmark we use the same testing environment as in Chapter 8. In the
benchmarks the server is run as io_uring_echo_server 8080 where 8080 is the port the
server listens on, and the client is run as echo_bench -a 127.0.0.1:8080 -t 10 -c 4,
where 127.0.0.1:8080 is the address and the port the client application connects to, 10 is
the number of seconds for which the application is run and 4 is the number of clients the
applications spawns in separate threads. In total we will conduct four different benchmarks:

a) clean, where the server is not profiled. This benchmark will be used as the baseline.
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b) sysrapl-default, where the server is profiled using sysrapl with default parameters
(RAPL value sampling at 99Hz).

c) sysrapl-highfreq, where the server is profiled using sysrapl sampling RAPL values
at 9999Hz.

d) strace, where the server is profiled using the strace tool. strace is known for intro-
ducing relatively high overhead to the profiled software and will serve as additional
context for this benchmark. In this benchmark the output of the strace tool is redi-
rected to /dev/null to reduce the effect of printing text into the terminal window on
the benchmark.

Table 7.1 shows the results of the different benchmarks where the results are the av-
erage of three sets of results for every benchmark. The results show that in applications
with highly frequent system calls in both benchmarks sysrapl-default and sysrapl-highfreq
sysrapl degrades the performance by about 20%. The small difference between Perfor-
mance ratio of the sysrapl-default and sysrapl-highfreq benchmarks shows that the majority
of the performance overhead comes from tracing system calls and not from sampling RAPL
energy readings, making our method of sampling of the events quite efficient. The strace
benchmarks confirms the general believe that the strace tool does introduce high overhead
to the profiled software. The method of tracing system calls in sysrapl compared to the
method of tracing in strace shows significantly better results and reaffirms our believe in
the efficiency of the eBPF instrumentation framework.

Benchmark Requests [req/sec] Responses [res/sec] Performance ratio [%]
clean 78, 780 78, 780 100.0%

sysrapl-default 65, 249 65, 249 82.8%

sysrapl-highfreq 62, 790 62, 790 79.7%

strace 29, 316 29, 316 37.2%

Table 7.1: Results of the benchmarks showing the runtime overhead of sysrapl with dif-
ferent configurations and strace.

7.2 Reporter

In this section, we’ll describe the implementation and capabilities of a reporting tool called
sysrapl-report. Statistical analysis and generation of graphs is commonly done using
languages like R or Python. As stated in Section 7.1, Perun is written in Python, so using
it for the implementation of sysrapl-report is a natural choice. In sysrapl-report we
make use of a number of modules which are well-maintained, widely used, and already used
by Perun. For data processing we used Pandas [35, 52], and for plotting Seaborn [56] (which
uses matplotlib [27]).

sysrapl-report is implemented as a single sysrapl-report.py script. By default it
outputs its results into a directory named based on the data from the interpreted profile
file. sysrapl-report takes as its input a single profile data JSON file and it only uses this
file to produce its results. This is to fulfil the NFR_RP requirement.

The number of system calls that a process can invoke in a matter of seconds can easily
reach thousand digits. sysrapl-report mainly cares about the energy scores of the different
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system calls whose values can differ largely. Presence of outliers is commonplace which can
significantly affect the final outputs of sysrapl-report. To detect outliers we use the
interquartile range (IQR) method which we then filter out from the datasets. The method
separates the data into four quartiles (𝑄1, 𝑄2, 𝑄3, 𝑄4) where the first quartile (𝑄1) and
the third quartile (𝑄3) are used to calculate the IQR. Then the IQR value is multiplied by
1.5 and subtracted from 𝑄1 and added to 𝑄3. Then all values below 𝑄1 − 1.5 * 𝐼𝑄𝑅 and
above 𝑄3 + 1.5 * 𝐼𝑄𝑅 are considered outliers.

7.2.1 Text report

Visualizations and graphs are a great way to convey complex data. For simple data a text
report is often more suitable for its simplicity. sysrapl-report outputs a brief text report
for an interpreted profile in the output directory in a file called report.txt.

ò
A concrete example of the text report can be seen in Appendix A.

The text report contains the following sections:

1. General information. Contains the name and PID of the profiled process, time of
profiling, its duration and the sample rate of the RAPL energy domains.

2. System information. Because energy profiling is hardware specific, a section about
the profiled system is included based on JSON section described in Section 7.1.2.

3. Ratio of energy consumption. By mapping energy consumption to system calls
it can be possible to estimate what percentage of the system energy consumption can
be attributed to the profiled process.

4. Top consuming system calls. Shows the top five contributors among system calls
to the process’s energy consumption. The number of shown top contributors can be
configured.

7.2.2 Visualizations

Every kind of data can be visualised using a different method. sysrapl does generate
heterogeneous data and thus different visualizations are needed for accurate assessment of
its findings. In sysrapl-report we implemented a number of graphs which we categorise
into two groups (due to two categories of data being provided by sysrapl):

a) Raw energy consumption (Section 7.2.2), and,

b) System calls as energy consumers (Section 7.2.2).

We designed these visualizations to be easy to understand to fulfil the NFR_CP re-
quirement.

ò
The following images have been cropped to better show the form of the different
graphs. The exact readings are not relevant in this section. An example report
with full forms of the graphs can be seen in Appendix A.
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Raw energy consumption

The first data category provided by sysrapl includes the raw energy consumption readings.
The readings serve as a basis for further analysis but even their raw form provides interesting
insights. The energy readings are separated into domains explained in Section 5.1.

Consumption at a certain point of time. The most basic graph plots the sampled
energy readings in time using line plot. It shows the energy behaviour of the whole system
and serves as a good entry point for getting a basic understanding of the system’s energy
behaviour. But due to no analysis being involved, it is highly susceptible to noise.

The X axis represents time and the Y axis represents the consumed energy.

Figure 7.2: Line plot of per-energy domain energy consumption in time

Cumulative consumption An alternative representation of the above graph with the
difference of showing the energy readings in a cumulative manner.

The X axis represents time and the Y axis represents the consumed energy.

Figure 7.3: Line plot of cumulative per-energy domain energy consumption in time
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System calls as energy consumers

The second data category contains all system calls called by the profiled process. Using the
raw energy consumption data every single system call has been given an energy score. This
process helps to reduce noise significantly. The scoring algorithm is described in Section
7.1.2.

Energy consumption in time. Similarly to the graph in Section 7.2.2, the most basic
plot is showing the energy consumption of system calls in time. But this data category is
more challenging due to higher number of data categories and uneven number of data points.
Every type of system call can have up to five energy scores and by default sysrapl-report
reports more than one system call. For displaying high number of samples across many
domains we chose two types of graphs: a) heatmap, and, b) waterfall graph.

a) Heatmap

Plotting values in time using heatmaps provides a great way of spotting exact points of
time where a significant chunk of energy was consumed. To allow seeing the maximums
reliably the dataset extremes are used as the border values. The graph has its limits as
the number of plotted samples needs to be capped at a low enough number to prevent
the cells from becoming too small to perceive their colour. In this work we achieve
this by downsampling the data points and summing them up. The sample width is
adjustable.

The X axis represents time, on the Y axis are different (system call, energy domain)
combinations and the colour of the cells represents the consumed energy. The brighter
the colour, the more energy was consumed by given pair at given time.

Figure 7.4: Heatmap of per-energy domain system call energy consumption in time

b) Waterfall graph

The graph is based on Brendan Gregg’s frequency trails [16] which he designed to
show the distribution of sampled data across many domains. In this work we adopted
frequency trails into a so called waterfall graph displaying on a normalized scale the
energy consumption of system calls in time. Similarly to the heatmap, every plot
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represents a different (system call, energy domain) combinations. These combinations
are sorted from the most expensive ones to the least expensive ones. This allows at
a single glance to see both the highest and smallest consumers. Unlike the heatmap,
the waterfall graph does not require the data points to be downsampled to fit into the
graph. Still the data points are downsampled and then upsampled again to achieve a
smoothing effect in the graph.

The X axis represents time and the Y axis represents the consumed energy on a nor-
malised scale.

Figure 7.5: Waterfall graph of per-energy domain system call energy consumption in time

Cumulative consumption in time. The tsunami graph is a variant of the waterfall graph
(b)) where instead of plotting the values at a certain point of time we plot the cumulative
values, i.e. the sum of all previous values. This allows us to show (system call, energy
domain) combinations with the highest energy consumptions.

The X axis represents time and the Y axis represents the consumed energy on a nor-
malised scale.

Figure 7.6: Tsunami graph of cumulative per-energy domain system call energy consumption

40



Distribution of energy consumption. Different system calls serve for different purposes
and thus their energy behaviour can largely differ. Using a box plot we can show the
distribution of the consumed energy.

The X axis shows different system calls across energy domains and the Y axis shows
the energy consumption. The box represents three quartiles (first, median and third), the
whiskers represent maximum and minimum. Values outside of the whiskers are outliers.

Figure 7.7: Box plot showing distribution of energy consumed by system calls across different
energy domains

7.3 Limitations

Use of phases. During development we’ve focused mainly on the FR_RO requirement
which lead us to design sysrapl in phases. This decision in some cases causes problems when
the post-processing time (FR_PPT) becomes so high, that the use of the tool is no longer
practical. Designing the post-processor capable of processing the raw data continuously and
in batches could be viable compromise.

Number of profiled processes. At the moment sysrapl can profile only a single process.
Removing this limitation could help with the FR_NS requirement because the energy
consumption could be split between the different processes. With such a change the scoring
algorithm (FR_SCS) would need to be adjusted as well.

Support for perf_event groups in eBPF programs. At the moment eBPF programs
can read counter values of perf events only one at a time while User-space applications
may make use of the capability to group different perf events and read their values in bulk.
Having this capability available for eBPF programs could provide some performance boost.

Speed. Despite the FR_IT requirement for sysrapl-report, the average runtime of the
tool is 3̃5 seconds for a profile with >11000 sampled system calls on a Lenovo ThinkPad
T460 laptop with Intel Core i5-6300U processor (used during experiments in Chapter 8).
We believe this is due to matplotlib being a single-threaded CPU-bound module which does
not scale well with multiple plots with a high number of samples. Use of plotting libraries

41



capable of utilizing multiple threads or GPU capabilities would significantly reduce the
average runtime of the tool.

Separation of output. During the design of sysrapl-report we’ve focused greatly on
the NFR_RCP requirement. We believe we met this requirement and can only further
raise the bar. At the moment sysrapl-report outputs the text report and graphs as
separate files. Bundling these into a single report would with interpreting the results and
also archiving the results as only a single file would be needed.
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Chapter 8

Experiments

This chapter will demonstrate the use of sysrapl and sysrapl-report (introduced in Chap-
ter 7) in a series of experiments. The goal of these experiments is not only to show the
capabilities of the created tooling but also to show its behaviour under different conditions.

8.1 Methodology

Instead of profiling a large number of projects across several experiments, we chose to
profile a single project — GNOME Shell [12] — under different runtime conditions. Because
sysrapl is an energy profiler, the runtime conditions can affect the results and we will
hopefully see a high value in showing those effects.

GNOME Shell is a Graphical shell using Mutter [13] as a Display server. The fact that
it is a non-trivial project with complex behaviour and that it makes even use of all basic
hardware components (CPU, RAM, GPU) makes it a good choice for our experiments.

For the runtime of the experiments we define three variables which we use to create a
matrix of test cases. The variables and their possible values are:

• System installation. The state of an operating system differs from user to user.
Most users don’t have complete control over their system’s configuration. Moreover,
this can be a potential source of energy consumption anomalies in the form of, e.g.,
software running continuously in background or software assuming a different mode
of operation.

– existing represents an existing Fedora Workstation 38 system with several years
worth of upgrades, personalized selection of installed software and possible fine-
tunings of the behaviour of the system. This environment is far from the ideal
environment for continuous testing.

– live represents a system as booted from a Live ISO on a USB flash drive. The
booted system is Fedora Workstation 38. This environment is close to the ideal
environment for continuous testing.

• Workload. The most visible cause of energy consumption is the software users run
on their system. Peripheral devices like Bluetooth modules or Wi-Fi modules can also
contribute significantly to the system’s energy consumption. In the experiments we
want to see how different workloads contribute to the system’s consumption.
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In both workloads a single terminal (GNOME Terminal) window is open and it is used
to start the test session.

– clean does not run any graphical applications with only the default set of back-
ground services running. The laptop is in air-plane mode (Wi-Fi and Bluetooth
modules are disabled). To ensure the cleanliness of the environment the profil-
ing was performed moments after the system’s boot and login into the graphical
session.

– busy has a series of applications running including: (1) calendar app (GNOME
Calendar), (2) maps application (GNOME Maps), and, (3) Firefox with 5+ tabs
open and loaded, where one plays a video on YouTube in 720p quality. Both Wi-
Fi and Bluetooth modules are enabled and the laptop is connected to a 5GHz
access point.

• Power mode. Modern hardware devices (i.e., CPU or GPU) do not have a single
mode of operation. The drivers of these devices often take into consideration external
factors like temperature and energy consumption (e.g., using interfaces like RAPL),
or configuration preference. The configuration preference is often presented to users
in the form of power modes.

Fedora Workstation uses the power-profiles-daemon [40] project since version 35 [41]
to provide a way to set the system’s mode of operation. The project (based on the used
performance scaling driver) sets used scaling governors or energy biases. The project
understands three power modes: a) balanced , b) powersave , and, c) performance
(needs to be supported by the scaling driver).

All experiments share a single testing scenario. It involves basic interaction with the
graphical shell simulating use by a user. To ensure consistency between the different test
cases, we automated the testing scenario by implementing a test script. The script is written
in the Bash scripting language. At the beginning it starts the sysrapl profiler and then
start executing the test scenario where the steps are:

1. Open overview (press Start).

2. Open application menu (press Start+A).

3. Close overview (press Start).

4. Switch to workspace on the right (press Ctrl+Alt+Right).

5. Switch to workspace on the left (press Ctrl+Alt+Left).

Between every step we delay for 5 seconds. The keystrokes are send to the shell using
the ydotool [42] tool. The tool requires a Daemon to be running1. The testing script needs
to be run with root privileges as both sysrapl and the ydotool daemon require them.

During the testing we used an external power meter (Elektrobock EMF-1) for correlating
the measured values with the values measured by sysrapl using the RAPL interface. The
power meter has a display updating the power readings every second with values with one
decimal place. The power meter was configured to display current power consumption in

1Which the test script ensures it does

44



Watts. Because the power meter does not offer a way to count the total energy consumed,
we captured every experiment on a video and retrospectively summed the measured values
into Joules.

8.2 Testing environment

All experiments were carried out on a single reference laptop:

Model Lenovo ThinkPad T460
Arch x86_64
CPU Intel Core i5-6300U CPU @ 2.40GHz
GPU Intel HD Graphics 520
RAM 16GB DDR3 @ 1600MHz
OS Fedora Workstation 38
Kernel 6.2.12
GNOME Shell 44.0
Mutter 44.0

The laptop contains two battery packs: a) internal, and, b) external. During the exper-
iments the external battery pack was removed and the laptop was plugged into the power
meter which was plugged into a wall socket.

8.3 Experiments

Table 8.1 shows all test cases that were conducted as part of our experiment.

Test case System installation Workload Power mode
ECB existing clean balanced
ECS existing clean powersave
ECP existing clean performance
EBB existing busy balanced
EBS existing busy powersave
EBP existing busy performance
LCB live clean balanced
LCS live clean powersave
LCP live clean performance
LBB live busy balanced
LBS live busy powersave
LBP live busy performance

Table 8.1: Test cases with specified runtime variables defined in Section 8.1

Table 8.2 shows all test cases with the total energy consumed sorted in descending order
based on the total consumed energy. The order of the test cases shows that, as expected, the
highest ranking test cases are in general the ones with busy workloads. These two groups are
then ordered generally by the power mode with performance at the top, followed by balanced
and powersave. The system installation has the lowest impact on the overall rankings but
the results show significant difference in energy consumption in test cases with different
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system installation variable but with all other variables equal (e.g, test cases EBP and LBP,
or test cases EBB and LBB). Test cases EBS and LBS are an exception to this phenomenon
which makes us believe that multiple runs of the same experiments are required to fully
exaplain this phenomenon.

The energy consumption of the whole laptop measured by the hardware monitor (see
Section 8.1) is uniformly higher than the values measured in the psys energy domain, which
reflects the energy consumption of the whole SoC, by about 100 Joules. This suggests that
while the SoC contributes the most to the reference system’s energy consumption, there
are other components that also contribute significantly. Such components possibly are the
display, speakers, WiFi module, Bluetooth module and more. If we were to order the test
cases in Table 8.2 in descending order based on the hardware monitor values, we would get
almost the same order with the exception of the last four test cases. This suggest that the
majority of variance in energy consumption across the different test cases comes from the
SoC rather than other hardware components in the reference system.

Test case psys [J] pkg [J] cores [J] ram [J] gpu [J] hardware monitor [J]
EBP 496.551 229.442 162.999 71.836 27.852 600.0
LBO 439.894 184.968 134.792 57.929 14.889 542.4
EBB 353.226 120.749 62.753 72.870 19.238 443.6
LBB 335.378 101.770 52.966 59.050 12.379 415.8
LBS 292.539 72.099 26.069 55.302 9.734 379.1
EBS 283.364 70.898 22.761 63.006 10.913 357.3
ECP 201.514 60.171 35.206 27.641 0.855 304.9
ECB 185.740 43.225 18,342 26.384 0.684 285.5
ECS 167.512 30.951 6.989 24.457 0.439 266.7
LCP 166.271 35.657 12.077 24.610 0.895 284.5
LCB 155.632 28.195 4.929 23.971 0.839 272.0
LCS 150.826 25.794 3.050 22.983 0.623 267.6

Table 8.2: Total energy consumed during test cases. The test cases are sorted in descending
order based on the psys energy domain

Figure 8.1 shows two heatmaps from two experiments showing clear difference in the
energy profile of the test cases.

In Figure 8.1a most of the ”hot spots“ in energy consumption across all system calls are
at the times when the different steps (marked by arrows) in the test scenario are carried
out. Areas marked by number 1 in Figure 8.1a highlight how the steps working with
the ”Overview“ and ”Application Menu“ show ”hot spots“ mainly for the ioctl system
call (i.e., input/output control; for configuring (mainly) hardware devices) while the steps
switching workspaces show ”hot spots“ mainly for the poll system call (i.e., for waiting for
file descriptor to perform I/O operations). This suggests a difference in workloads and the
capability of sysrapl to detect these differences.

But in Figure 8.1b the test scenario steps are not as clear. That suggest that Compositing
windows is a significantly more expensive activity than the short-lived actions of interacting
with the shell. In the figure there are two notable areas. The first one is marked by number
2 where the energy consumption of the ioctl system call has increased. In this case the
Shell renders additional graphical elements while compositing scaled windows on the screen
leading to probable higher energy consumption. In the are marked by number 3 the energy
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(a) Test case ECB (b) Test case EBB

Figure 8.1: Heatmaps from test cases ECB and EBB showing energy consumption of
system calls across energy domains in time with highlighted steps of the test scenario and
highlighted noteworthy areas in the heatmaps.

consumption of the ioctl system call was lowered significantly. We believe this is due to an
optimization in Shell where an invisible window (Firefox playing a YouTube video), hidden
after switching a workspace, is no longer composited as it is no longer visible on the screen.

Table 8.3 shows the top consuming system calls across all test cases. The results show
that while there is some small variation in the ranking of the system calls, the lists always
contain the ioctl, poll, read and write system calls. Their presence is expected as they are all
used for I/O operations which Shell does use a lot in order to draw content on the display.

The results also show clear difference in energy consumption between test cases with the
clean and busy workloads. This shows the capability of the profiler to recognize differences
in workloads.

From the results it is apparent that the scoring algorithm described in Section 7.1.2 is
indeed quite trivial and large number of system calls and the length of their runtime affect
the energy score significantly. This is very noticeable in test cases EBB, EBS, and EBP
where the total consumption of the different system calls is the highest for the powersave
performance mode.

In test cases with busy workload it is unclear what is the extent of the effect of the noise
(i.e., Firefox window playing a YouTube video) on the resulting energy scores of system
calls. A mechanism for filtering out noise could increase the quality of the results. But for
the purposes of this thesis the results are adequate because the scores managed to properly
locate spots in the profiles with higher/lower energy consumption.
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Test cases ECB ECS ECP EBB EBS EBP

Top 5 consuming
system calls

ioctl poll poll ioctl ioctl ioctl
poll ioctl ioctl write write poll
read read read read read write
mprotect write write poll poll read
write getpid getpid epoll_wait epoll_wait recvmsg

Top 5 consuming
system calls
values (psys) [mJ]

100.641 91.593 73.750 831.667 1, 137.011 687.751
70.060 72.700 28.805 694.437 869.479 541.777
19.717 28.861 12.380 607.970 828.454 495.398
14.982 28.364 10.272 482.460 463.981 426.071
14.554 11.331 5.480 152.292 197.497 124.903

Test cases LCB LCS LCP LBB LBS LBP

Top 5 consuming
system calls

poll poll poll write write poll
ioctl ioctl ioctl read read write
read read read poll ioctl ioctl
write write write ioctl poll read
mprotect getpid getpid epoll_wait epoll_wait recvmsg

Top 5 consuming
system calls
values [mJ]

58.396 88.072 83.324 700.995 902.970 463.572
57.762 76.289 24.350 508.048 644.264 362.542
24.863 34.246 11.899 398.288 516.286 265.104
21.064 30.144 10.709 373.766 240.162 253.515
20.820 13.512 5.459 174.855 229.607 142.546

Table 8.3: Top consuming system calls and the values consumed (psys) in all test cases.
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Chapter 9

Conclusion

The goal of this thesis was to implement a novel energy profiler for the Perun project and
together with a way to visualize the results it creates. The profiler is capable of sampling
at high frequencies the energy consumption of a system and put that consumed energy into
the context of system calls. The profiler operates with low overhead, requires minimum
number of dependencies and is publicly available under the GPLv3 license. Moreover we
proposed a reporting tool capable of using the profiler’s output data to create both text
reports and visualizations of the profiled data providing a comprehensive and easy-to-use
way to interpret the profiler’s results.

We evaluated the profiler on a series of experiments where the GNOME Shell software
was profiled in different runtime environments. The experimental evaluation showed that
the profiler a) is capable of locating ”hot spots“ in the runtime of applications, and, b) is
capable of picking up differences in the profiling runtime conditions.

Future work. The next step is to fully integrate the energy profiler in the Perun project
as a new collector. Because the implementation of the profiler was designed with this goal in
mind, this step should be straightforward. Adding support to the profiler to trace multiple
processes could help in reducing the effect of noise on the results of the profiler by using the
additional system call traces in the scoring algorithm. The informational value of the profiler
could also be increased significantly by adding support for scoring functions in Callgraphs.
The performance of the reporting tool could be improved by leveraging a plotting module
making use of multiple threads or even GPU APIs.
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Appendix A

Full report of profile data from a test
case

# General information:
Process gnome-shell
Profile time 2023-04-28T05:08:52
Profile duration 0:00:30.170295
Energy profile frequency 99 Hz

# System information:
system Linux
node localhost-live
release 6.2.9-300.fc38.x86_64
version #1 SMP PREEMPT_DYNAMIC Thu Mar 30 22:32:58 UTC 2023
machine x86_64
processor Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz

# Ratio of energy consumption (total/process):
energy domain system [J] process [J] ratio
psys 335.378 2.510 0.75%
pkg 101.770 0.767 0.75%
cores 52.966 0.383 0.72%
gpu 12.379 0.107 0.86%
ram 59.050 0.452 0.77%

# Top consuming system calls:
system call psys [mJ] pkg [mJ] cores [mJ] gpu [mJ] ram [mJ]
write 700.995 209.101 97.413 32.683 128.304
read 508.048 151.906 71.885 23.059 93.057
poll 398.288 127.629 68.833 16.072 69.498
ioctl 373.766 115.554 62.071 12.568 66.696
epoll_wait 174.855 51.404 22.856 8.637 32.112

Listing A.1: Text report from the LBB test case (see Chapter 8)
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Figure A.1: Line plot of per-energy domain energy consumption in time from the LBB test
case (see Chapter 8)

Figure A.2: Line plot of cumulative per-energy domain energy consumption in time from
the LBB test case (see Chapter 8)
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Figure A.3: Box plot showing distribution of energy consumed by system calls across dif-
ferent energy domains from the LBB test case (see Chapter 8)
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Figure A.4: Heatmap of per-energy domain system call energy consumption in time from
the LBB test case (see Chapter 8)
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Figure A.5: Tsunami graph of cumulative per-energy domain system call energy consump-
tion from the LBB test case (see Chapter 8)
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Figure A.6: Waterfall graph of per-energy domain system call energy consumption in time
from the LBB test case (see Chapter 8)

62


	Glossary
	Introduction
	Background and Related Work
	Knowledge of developers
	Energy efficiency of software constructs
	Energy profiling techniques
	Side-channel attacks

	Perun
	Overview
	Architecture
	Workflow

	eBPF
	Overview
	Developer toolchains
	BCC
	bpftrace
	libbpf

	BPF CO-RE
	BTF
	Clang
	libbpf

	eBPF in practice
	Alternative technologies

	Existing Methods and Technology
	RAPL
	Reading the values

	System calls
	I/O operation bundles
	Asynchronous Power Behaviour


	Analysis of Requirements
	Analysis of Requirements
	Functional Requirements
	Non-functional Requirements


	Design and Implementation
	Energy profiler
	Engine
	Post-processor
	Performance

	Reporter
	Text report
	Visualizations

	Limitations

	Experiments
	Methodology
	Testing environment
	Experiments

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	Full report of profile data from a test case

